Sun Position Forecasting Menggunakan Metode RNN – LSTM Sebagai Referensi Pengendalian Daya Solar Cell

Main Article Content

Eros Fikri Syahram

Abstract

Solar energy is used as electrical energy for daily life by using solar cell. There are several models for maximizing the absorption of solar cell power by using reflectors and solar tracking. Reflector focuses sunlight on the solar cell to get maximum light. Solar tracking real-time tracking the sun by moving two motors and sensors to read the direction of the sun's angle. Both have the disadvantage of tracking the sun continuously. So it is necessary to optimize the system to determine the tilt angle of the actuator and be able to streamline the intensity of sunlight that can be absorbed by solar cells with the identification system that can be done in realtime or directly to minimize the occurrence of power wastage. Prediction is one of the most important elements for decision-makers of the problems that occur above. In this paper, the method used in predicting the sun's angle is by using the Recurrent Neural Network (RNN) method which has a Long-Short Term Memory (LSTM) structure in the RNN system. In this reseacrh, the data used to predict the sun angle from the sunscalc.org site in the area of the University of Muhammadiyah Malang campus 3 with a period of one year. Testing with the RNN-LSTM structure is done with two different prediction models, namely weekly, monthly, and annual data for daily data results, and hourly data for daily data for one week. The test results on weekly data detect Root Mean Square Error of 0.12%, the monthly data is 0.1% and the annual data is 0.24%. The monthly data model has the fewest error values, so predictive data has a high degree of accuracy.

Article Details

How to Cite
[1]
Eros Fikri Syahram, “Sun Position Forecasting Menggunakan Metode RNN – LSTM Sebagai Referensi Pengendalian Daya Solar Cell”, jeetech, vol. 2, no. 2, pp. 65-77, Nov. 2021.
Section
Articles

References

Nursalam, 2016, metode penelitian. (2013). SOLAR TRACKING DUAL – AXIS BERBASIS ARDUINO UNO DENGAN MENGGUNAKAN LENSA FRESNEL GUNA MENINGKATKAN EFISIENSI PENGFOKUSAN CAHAYA MATAHARI. Journal of Chemical Information and Modeling, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004

S. S. Yatmani, “Sistem kendali Solar Tracker Untuk Meningkatkan effisiensi Daya,” J. Tek. Mesin ITI, vol. 4, no. 1, p. 1, 2020, doi: 10.31543/jtm.v4i1.354..

M. Nur Qomaruddin and M. Khairi, “Real Time Clock Sebagai Tracking Sinar Matahari Pada Solar Cell Berbasis Mikrokontroler Untuk Lampu Taman (Real Watch Tracking As A Sun Ray On Microcontroller Based Solar Cells For Park Lights),” JEEE-U (Journal Electr. Electron. Eng., vol. 3, no. 2, p. 305, 2019, doi: 10.21070/jeee-u.v3i2.2547.

Saputra, Rahmad Aryangga (2018) ANALISIS POSISI MATAHARI SEBAGAI REFERENSI PERGERAKAN REFLEKTOR PANEL SURYA DALAM UPAYA OPTIMASI DAYA KELUARAN. Undergraduate (S1) thesis, University of Muhammadiyah Malang.

Shalih, Y., & Keluaran, D. (n.d.). Pengaruh Arah Posisi Pemasangan Panel Surya Terhadap Putput Daya Keluaran.

Chong, K.-K., & Wong, C.-W. (2010). General Formula for On-Axis Sun-Tracking System. Solar Collectors and Panels, Theory and Applications, May 2014. https://doi.org/10.5772/10341

Fauziyah, Lailatul (2018) ACCURATE POSITIONING CONTROL OF SOLAR PANEL SYSTEM FOR AZIMUTH AND ELEVATION TRACKING USING SMC BASED SUN POSITION IMAGE. Undergraduate (S1) thesis, University of Muhammadiyah Malang.

Khasanah, Hidayatul (2020) DESIGN SMART MONITORING ENERGI LISTRIK BERBASIS PREDICTIVE ANALYTICS MENGGUNAKAN ALOGARITMA RECURRENT NEURAL NETWORK (RNN). Undergraduate (S1) thesis, University of Muhammadiyah Malang.

N. Soedjarwanto, “Sistem Pelacak Otomatis Energi Surya Berbasis Mikrokontroler ATMega8535,” J. ELTEK Polinema, pp. 11–20, 2015.

Hartati, Sri dan Ahmad Ashril Rizal (2017, 1 April) Prediksi Kunjungan Wisatawan dengan Recurrent Neural Network Extended Kalman Filter. Jurnal Ilmiah ILMU KOMPUTER Universitas Udayana Vol. X, 1, 7-18

K. Ivanedra and M. Mustikasari, “Implementasi Metode Recurrent Neural Network Pada Text Summarization Dengan Teknik Abstraktif the Implementation of Text Summarization With Abstractive Techniques Using Recurrent Neural Network Method,” J. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 4, pp. 377–382, 2019, doi: 10.25126/jtiik.201961067