Pemanfaatan Teknologi Computer Vision Untuk Implementasi Deteksi Masker Menggunakan Metode Supervised Learning
DOI:
https://doi.org/10.32492/jeetech.v4i2.4201Keywords:
Mask detection, Supervised Learning, Computer visionAbstract
The use of masks is still very strict in public places, especially in hospitals, this is solely done to prevent the spread of the corona virus again. The purpose of this research is to assist examination workers or health protocol workers in supervising the use of masks in public places. Mask detection is a solution to this problem, by utilizing computer vision technology and applying supervised learning algorithms. For this mask detection classification method, this system uses the Naive Bayes method. The output of this mask detection system is planned to distinguish people wearing masks and not wearing masks, by giving red labels to people who are not wearing masks and green labeling to people wearing masks. The distance aspect is used in testing this mask detection system, the system is able to work well by getting an error rate presentation below 2% and getting the highest accuracy of 100% with an average percentage value of 98%. On the other hand, there are still weaknesses in this system, the use of brown masks that are in harmony with skin color can worsen the results of the classification system
References
D. Arianto and A. Sutrisno, “Kajian Antisipasi Pelayanan Kapal dan Barang di Pelabuhan Pada Masa Pandemi Covid–19,” J. Penelit. Transp. Laut, vol. 22, no. 2, pp. 97–110, 2021, doi: 10.25104/transla.v22i2.1682.
Ike Fibriani, Widjonarko, Catur Suko Sarwono, and Firecky Dwika, “Deteksi Penyakit Brown Eye Spot pada Daun Kopi Menggunakan Metode Euclidean Distance dan Hough Transform,” J. JEETech, vol. 1, no. 1, pp. 44–49, May 2020, doi: 10.48056/jeetech.v1i2.120.
F. S. Pamungkas, B. D. Prasetya, and I. Kharisudin, “Perbandingan Metode Klasifikasi Supervised Learning pada Data Bank Customers Menggunakan Python,” Prism. Pros. Semin. Nas. Mat., vol. 3, pp. 692–697, 2020.
T. Arifianto, “Penerapan Algoritma Viola-Jones Untuk Deteksi Masker Covid-19 Di Politeknik Perkeretaapian Indonesia Madiun,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 4, pp. 2030–2040, 2021, doi: 10.35957/jatisi.v8i4.1106.
R. Wihandika, “Deteksi Masker Wajah Menggunakan Metode Adjacent Evaluation Local Binary Patterns,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 705–712, 2021, doi: 10.29207/resti.v5i4.3094.
M. F. Naufal and S. F. Kusuma, “Pendeteksi Citra Masker Wajah Menggunakan CNN dan Transfer Learning,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 6, p. 1293, 2021, doi: 10.25126/jtiik.2021865201.
N. Nafi’iyah, C. Fatichah, D. Herumurti, E. R. Astuti, and R. H. Putra, “MobileNetV2 Ensemble Segmentation for Mandibular on Panoramic Radiography,” Int. J. Intell. Eng. Syst., vol. 16, no. 2, pp. 546–560, 2023, doi: 10.22266/ijies2023.0430.45.
A. Jaiswal, N. Gianchandani, D. Singh, V. Kumar, and M. Kaur, “Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning,” J. Biomol. Struct. Dyn., vol. 39, no. 15, pp. 5682–5689, 2021, doi: 10.1080/07391102.2020.1788642.
D. K V, H. E, N. Jain D, and N. Reddy B, “Hand Gesture Recognition and Voice Conversion for Hearing and Speech Aided Community,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., vol. 6, no. 3, pp. 223–228, 2020, doi: 10.32628/cseit206346.
N. A. Maiyendra, “Perancangan Sistem Informasi Promosi Tour Wisata Dan Pemesanan Paket Tour Wisata Daerah Kerinci Jambi Pada Cv. Rinai Berbasis Open Source,” Jursima, vol. 7, no. 1, p. 1, 2019, doi: 10.47024/js.v7i1.164.
A. Anisah and K. Kuswaya, “Analisis Dan Perancangan Sistem Informasi Pengolahan Data Pengeluaran, Penggunaan Bahan Dan Hutang Dalam Pelaksanaan Proyek Pada Pt Banamba Putratama,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 8, no. 2, p. 507, 2017, doi: 10.24176/simet.v8i2.1352.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Jurnal JEETech

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.