Deteksi Kantuk Untuk Keamanan Berkendara Berbasis Pengolahan Citra
DOI:
https://doi.org/10.32492/jeetech.v4i1.4107Keywords:
Raspberry Pi, Drowsiness Detection, Facial Landmark, Image ProcessingAbstract
Traffic accidents are increasing in Indonesia. One of the main causes of accidents is driver fatigue. Drowsiness generally occurs at night when the body needs rest. However, some are caused by fatigue during activities. When driving a car, this situation must be taken into account to avoid the number of accidents caused by fatigue. Because of these problems, we need a tool that can detect automatically whether the driver is asleep or conscious using the facial landmark method. The initial process starts with streaming the camera by the webcam which will be processed by the raspberry pi 3b to detect the face area using the eye aspect ratio then the algorithm on the eye aspect ratio is used to detect sleepy eyes with the output in the form of a speaker, where the speaker will emit a sound that can be changed according to at the will of the driver. This research succeeded in designing a drowsiness detection device and obtaining data from tests that have been carried out by detecting closed or closed eyes with accuracy results using the facial landmark method and eye aspect ratio detecting drowsiness with an average accuracy of 90.4%.
References
Subdirektorat Statistik Transportasi, Statistik Transportasi Darat, I. Jakarta: BPS RI,(2021)
Alodokter.com (2022). Penyebab Rasa Kantuk Serta Gejala Dan Cara Pengobatan.
Pardede, D. C., Rumagit, A. M., & Kaunang, S. T. G. (2022). Deteksi Pengendara Mengantuk Menggunakan Metode Eye Tracking Berbasis Rasberry Pi.
Luthfia, F. Y. (2022). Mendeteksi Kantuk Pada Pengemudi Mobil Menggunakan Metode Haar Cascade (Doctoral dissertation, Universitas Muhammadiyah Malang).
Puteri, R. T., & Utaminingrum, F. (2020). Deteksi Kantuk Menggunakan Kombinasi Haar Cascade dan Convolutional Neural Network. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.
Ulla Delfana Rosiani, Rosa Andrie Asmara, and Nadhifatul Laeily, (2020)“Penerapan Facial Landmark Point Untuk Klasifikasi Jenis Kelamin Berdasarkan Citra Wajah,” J. Inform. Polinema, vol. 6, no. 1, pp. 55–60, doi: 10.33795/jip.v6i1.328.
Bachtiar, F. A., & Wafi, M. (2021). Komparasi Metode Klasifikasi untuk Deteksi Ekspresi Wajah Dengan Fitur Facial Landmark. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(5), 949-956.
Bambang Yuwono,Yusri I Sania, Mangaras Yanu F, Panji Dwi A. (2019) Face & Facial Expressions Recognition. Universitas Pembangunan Nasional “Veteran” Yogyakarta. Buku Saku Pengolahan Citra
Pangestu, G., Utaminingrum, F., & Bachtiar, F. (2019). Eye state recognition using multiple methods for applied to control smart wheelchair. Int. J. Intell. Eng. Syst, 12, 232-241
Rabbani, M. F., Wahiddin, D., & Rahmat, R. (2021, December). Haarcascade Classifier Dan Eye Aspect Ratio Untuk Mengidentifikasi Mata Kantuk Pada Pengemudi Mobil. In Conference on Innovation and Application of Science and Technology (CIASTECH) (pp. 437-444).
Y. Efendi, A. N. Putri, Rahmaddeni, and S. Imardi, “Prototype Alarm Deteksi Mata Kantuk Menggunakan,” J. Inf. Syst. Informatics Eng., vol. 4, no. 2, pp. 77–83, (2020).
Suherman, S., Ananda, R., & Afriantoro, I. (2022). Sistem Informasi Absensi Foto Webcam Menggunakan Metode Togaf Pada SMK Media Insani Cendekia Cikarang. Jurnal Teknologi Informatika dan Komputer, 8(2), 110-120.
TeoriKomputer.com (2018). Pengertian-dan-fungsi-speaker-komputer.html
A. Materi, “Pengertian Python, Fungsi, Kelebihan dan Kekurangan,” materibelajar.co.id, 2021. https://materibelajar.co.id/pengertian-python/ (accessed Jan. 26, 2022).
Wikipedia, (2021) “OpenCV - Wikipedia bahasa Indonesia, ensiklopedia bebas,” https://id.wikipedia.org/, . https://id.wikipedia.org/wiki/OpenCV
Published
How to Cite
Issue
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.