Pengaruh Penyesuaian Parameter Membership Function pada Sistem Kendali Robot Balancing Berbasis Fuzzy Logic
DOI:
https://doi.org/10.32492/jeetech.v5i2.5205Keywords:
Fuzzy LogicAbstract
This research develops a balancing robot control system using a fuzzy logic approach, focusing on the adjustment of membership function parameters. The main components of the system include the ESP32 microcontroller, MPU6050 sensor for detecting tilt angle and angular velocity, and L298 motor driver for DC motor actuation. Triangular-shaped membership functions are implemented, and parameters a, b, and c are adjusted through simulation to enhance system performance. Evaluation results indicate an average settling time of 1.2 seconds, a maximum overshoot of 5%, and a steady-state error of less than 2 degrees. This adjustment successfully balances response speed and stability, providing important guidance for developers in designing a more optimal fuzzy logic control system. The research was conducted at the Electrical Engineering Laboratory of 17 August 1945 University (Untag) Surabaya from June to December 2023.
References
R. Hartayu, S. Santoso, A. O. U. Kaleka, and Moh. K. Musakhol, ‘Desain Simulasi Robot Kesetimbangan Dua Roda Dengan Kecerdasan Buatan’, J. Sains Dan Inform., vol. 6, no. 2, pp. 175–182, Dec. 2020, doi: 10.34128/jsi.v6i2.232.
F. Fahmizal, G. Setyawan, M. Arrofiq, and A. Mayub, ‘Logika Fuzzy Pada Robot Inverted Pendulum Beroda Dua’, J. Teknol. Inf. Dan Ilmu Komput., vol. 4, no. 4, p. 244, Dec. 2017, doi: 10.25126/jtiik.201744484.
T. Anitha, G. Gopu, M. Nagarajapandian, and P. A. M. Devan, ‘Hybrid Fuzzy PID Controller for Pressure Process Control Application’, in 2019 IEEE Student Conference on Research and Development (SCOReD), Bandar Seri Iskandar, Malaysia: IEEE, Oct. 2019, pp. 129–133. doi: 10.1109/SCORED.2019.8896276.
Santoso, I. A. Wardah, P. Slamet, A. H. Andriawan, and A. R. Algopiki, ‘Design and Build Two Wheel Balancing Robot Simulation with Fuzzy PID’, presented at the International Conference on Advanced Engineering and Technology, Jun. 2024, pp. 124–128. Accessed: Jun. 28, 2024. [Online]. Available: https://www.scitepress.org/PublicationsDetail.aspx?ID=KDP9hf247lo=&t=1
S. Kumari and S. K. Swain, ‘Optimal control based PID tuning for control of four quadrant chopper fed DC motor’, in 2018 Technologies for Smart-City Energy Security and Power (ICSESP), Mar. 2018, pp. 1–6. doi: 10.1109/ICSESP.2018.8376695.
F. Fahmizal, M. Arrofiq, and A. Mayub, ‘Logika Fuzzy pada Robot Inverted Pendulum Beroda Dua’, J. Teknol. Inf. Dan Ilmu Komput., vol. 4, no. 4, pp. 244–252, 2017.
S. Shao, R. Yan, Y. Lu, P. Wang, and R. X. Gao, ‘DCNN-Based Multi-Signal Induction Motor Fault Diagnosis’, IEEE Trans. Instrum. Meas., vol. 69, no. 6, pp. 2658–2669, Jun. 2020, doi: 10.1109/TIM.2019.2925247.
X. Chen, Z. Hu, and Y. Sun, ‘Fuzzy Logic Based Logical Query Answering on Knowledge Graphs’, Proc. AAAI Conf. Artif. Intell., vol. 36, no. 4, Art. no. 4, Jun. 2022, doi: 10.1609/aaai.v36i4.20310.
H. Torres-Salinas, J. Rodríguez-Reséndiz, E. E. Cruz-Miguel, and L. A. Ángeles-Hurtado, ‘Fuzzy Logic and Genetic-Based Algorithm for a Servo Control System’, Micromachines, vol. 13, no. 4, Art. no. 4, Apr. 2022, doi: 10.3390/mi13040586.
A. I. M. Almadi, R. E. Al Mamlook, Y. Almarhabi, I. Ullah, A. Jamal, and N. Bandara, ‘A Fuzzy-Logic Approach Based on Driver Decision-Making Behavior Modeling and Simulation’, Sustainability, vol. 14, no. 14, Art. no. 14, Jan. 2022, doi: 10.3390/su14148874.
G.-P. Ren et al., ‘Design of Interval Type-2 Fuzzy Controllers for Active Magnetic Bearing Systems’, IEEEASME Trans. Mechatron., vol. 25, no. 5, pp. 2449–2459, Oct. 2020, doi: 10.1109/TMECH.2020.2978018.
N. M. M. Noor, S. A. A. M. Halid, and R. Mahmod @Wahab, ‘STUDY THE PERFORMANCE OF TWO-WHEELED BALANCING MOBILE ROBOT USING FUZZY PD CONTROLLER’, J. Mek., pp. 164–174, Nov. 2023, doi: 10.11113/jm.v46.500.
Á. Odry, R. Fullér, I. J. Rudas, and P. Odry, ‘Fuzzy control of self-balancing robots: A control laboratory project’, Comput. Appl. Eng. Educ., vol. 28, no. 3, pp. 512–535, 2020, doi: 10.1002/cae.22219.
H. B. Karakurt and C. Koçak, ‘Increasing quality of service in wireless local area networks through fuzzy logic based feedback control method’, Wirel. Netw., vol. 29, no. 5, pp. 2217–2233, Jul. 2023, doi: 10.1007/s11276-023-03293-w.
A. Fan, Y. Li, S. Fang, Y. Li, and H. Qiu, ‘Energy management strategies and comprehensive evaluation of parallel hybrid ship based on improved fuzzy logic control’, IEEE Trans. Transp. Electrification, pp. 1–1, 2023, doi: 10.1109/TTE.2023.3332772.
H. Huang, H. Xu, F. Chen, C. Zhang, and A. Mohammadzadeh, ‘An Applied Type-3 Fuzzy Logic System: Practical Matlab Simulink and M-Files for Robotic, Control, and Modeling Applications’, Symmetry, vol. 15, no. 2, Art. no. 2, Feb. 2023, doi: 10.3390/sym15020475.
H. Hendriansyah, N. Siswandari, K. Aris, and S. Muhammad, ‘Increasing the Efficiency of Electrical Load Calculations Using the Gauss-Seidel Method with Fuzzy Logic’, Circuit J. Ilm. Pendidik. Tek. Elektro, vol. 8, no. 2, Art. no. 2, Aug. 2024, doi: 10.22373/crc.v8i2.24729.
J. Díaz-Téllez, R. S. García-Ramírez, J. Pérez-Pérez, J. Estevez-Carreón, and M. A. Carreón-Rosales, ‘ROS-based Controller for a Two-Wheeled Self-Balancing Robot’, J. Robot. Control JRC, vol. 4, no. 4, Art. no. 4, Jul. 2023, doi: 10.18196/jrc.v4i4.18208.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Santoso Santoso, Balok Hariadi, Ratna Hartayu, Reza Sarwo Widagdo, Wahyu Setyo Pambudi, M Ary Heryanto

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.