Identifikasi Pola Prilaku Belajar Mahasiswa Pada Platform Learning Management System Dengan Algoritma K-Means
DOI:
https://doi.org/10.32492/jeetech.v6i1.6102Keywords:
Pola Perilaku Belajar Mahasiswa, Learning Management System, Algoritma K-MeansAbstract
This study aims to explain students' behavior in accessing the kalam.umi.ac.id learning platform and its impact on student academic performance. It analyzes data collected from students' access to the platform during 12 sessions in one semester for the Islamic communication subject taught by Professor Surani. The data includes students' access times, access frequency, and academic performance such as assignment grades, midterm exams, and final exams. Through data processing methods, correlation analysis, and cluster optimization, the study found a positive relationship between access times, midterm exams, final exams, and assignments with students' final grades. The higher these variables, the higher the students' final grades. However, this relationship is not always consistent across different variables. In this study, the Elbow method was used to determine the optimal number of clusters by identifying the point where the variance reduction becomes less significant. Additionally, the Sum of Square Error (SSE) was analyzed to understand the sharp change followed by a gradual decrease in the value of K until stability is reached. Clustering results using the K-Means algorithm showed the presence of three student clusters based on their learning behavior. Cluster 0 is the largest, consisting of 176 students. Cluster 1 has 57 students, and cluster 2 is the smallest with 17 students. These clusters provide insights into varying student learning patterns, including differences in final grades and access frequency. These findings can be used as a basis for developing more effective and personalized learning strategies for students.
References
Ahmed, M., R. Seraj, dan S. M. S. Islam. 2020. “The k-means Algorithm: A Comprehensive Survey and Performance Evaluation.” Electronics.
Aziz, FNRFJ, B. D. Setiawan, dan I. Arwani. 2018. “Implementasi Algoritma K-Means untuk Klasterisasi Kinerja Akademik Mahasiswa.” … Teknologi Informasi Dan Ilmu ….
Hamka, M., dan N. Ramdhoni. 2022. “K-Means cluster optimization for potentiality student grouping using elbow method.” AIP Conference Proceedings. doi: 10.1063/5.0108926.
Juanita, S., dan R. D. Cahyono. 2024. “K-MEANS CLUSTERING WITH COMPARISON OF ELBOW AND SILHOUETTE METHODS FOR MEDICINES CLUSTERING BASED ON USER REVIEWS.” Jurnal Teknik Informatika (Jutif).
Maria S, Simatupang J, Manurung F. n.d. “IMPLEMENTASI SISTEM INFORMASI KEPENDUDUKAN PADA DESA SENDAUR BERBASIS WEB.” Jurnal Intra Tech E ….
Nurul, S., S. Anggrainy, dan S. Aprelyani. 2022. “Faktor-Faktor Yang Mempengaruhi Keamanan Sistem Informasi: Keamanan Informasi, Teknologi Informasi Dan Network (Literature Review Sim).” Jurnal Ekonomi Manajemen ….
Rahmawati, H., dan M. Muhroji. 2022. “Gaya Belajar Peserta Didik Usia Dini Berprestasi Akademik.” Jurnal Obsesi: Jurnal Pendidikan Anak Usia ….
Sallaby, A. F., dan I. Kanedi. 2020. “Perancangan Sistem Informasi Jadwal Dokter Menggunakan Framework Codeigniter.” Jurnal Media Infotama.
Samosir, K., S. Wahyuddin, E. Devia, L. W. Santoso, dan ... 2022. “Sistem Basis Data.”
Setyaningtyas, S., B. I. Nugroho, dan Z. Arif. 2022. “Tinjauan Pustaka Sistematis: Penerapan Data Mining Teknik Clustering Algoritma K-Means.” Jurnal Teknoif Teknik ….
Published
How to Cite
Issue
Section
Copyright (c) 2025 Muhammad Ikhwan Mardin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.