Prediksi Jumlah Permintaan Darah Jenis Packed Red Cells Menggunakan Support Vector Regression

Authors

  • Ahmad Izzuddin
  • Farhatin Nikmah Universitas Panca Marga
  • Nuzul Hikmah Universitas Panca Marga

DOI:

https://doi.org/10.32492/jeetech.v6i2.6209

Abstract

The Blood Transfusion Unit (UTD) of the Indonesian Red Cross (PMI) in Probolinggo Regency faces challenges in managing blood supplies, particularly for Packed Red Cells (PRC), due to unpredictable fluctuations in demand. The imbalance between supply and demand often leads to shortages or surpluses, affecting the quality of healthcare services. This study aims to predict the demand for PRC to support more efficient inventory management. The method employed is Support Vector Regression (SVR), an approach within the Support Vector Machine (SVM) algorithm that is effective for regression and prediction tasks. Historical blood demand data was used to train the model. The results indicate that SVR provides sufficiently accurate predictions for all blood types, with the best performance achieved for blood type B, yielding a Root Mean Square Error (RMSE) of 0.0589 and a Mean Absolute Percentage Error (MAPE) of 7.11%. In conclusion, the SVR method can be effectively applied to forecast PRC demand and has the potential to support decision-making in blood stock management at the UTD PMI of Probolinggo Regency.

References

D. K. P. Aji, D. R. Yunianto, and A. A. Sakti, “Sistem Peramalan Jumlah Permintaan Darah di UTD PMI Kota Malang,” Semin. Inform. Apl. Polinema, pp. 28–33, 2019, [Online]. Available: http://jurnalti.polinema.ac.id/index.php/SIAP/article/view/318

R. Kurniawan, A. Halim, and H. Melisa, “Prediksi Hasil Panen Pertanian Salak di Daerah Tapanuli Selatan Menggunakan Algoritma SVM (Support Vector Machine),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 2, pp. 903–912, 2023, doi: 10.30865/klik.v4i2.1246.

M. Fauzi and S. N. Bahagia, “Pengambilan Keputusan Komponen Darah Dalam Pengendalian Persediaan Dengan Menggunakan Metode Ahp Di Pmi Kota Bandung,” J. Ilm. Teknol. Infomasi Terap., vol. 5, no. 2, pp. 13–20, 2019, doi: 10.33197/jitter.vol5.iss2.2019.276.

V. Vamilina and M. Mustakim, “Penerapan Regresi Linier Untuk Prediksi Jumlah Kasus Covid-19 di Provinsi Riau,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, p. 191, 2021, doi: 10.30865/jurikom.v8i6.3635.

M. Hatta and A. Fauziah Fitri, “Sistem Prediksi Persediaan Stok Darah Dengan Metode Least Square Pada Unit Transfusi Darah Studi Kasus PMI Kota Cirebon,” J. Ilm. Ilmu Komput., vol. 6, no. 1, pp. 41–45, 2020, doi: 10.35329/jiik.v6i1.130.

W. Ode May Zhara Averina, E. Santoso, and N. Yudistira, “Prediksi Persentase Penyelesaian Permohonan Hak Milik Menggunakan Metode Support Vector Regression (SVR) (Studi Kasus : Badan Pertanahan Nasional (BPN) Kabupaten Malang),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 9, pp. 2895–2901, 2020, [Online]. Available: http://j-ptiik.ub.ac.id

D. I. Ridwan, C. Setianingsih, and M. A. Murti, “Prediksi Penggunaan Energi Listrik Support Vector Regression Prediction of Electricity Using Support Vector Regression Method,” e-Proceeding Eng., vol. 8, no. 6, pp. 12135–12144, 2021.

M. Laverda Subiyanto, Y. Amanda, M. Nadhil Fachrian, A. Yazid Busthomi Rohim, and N. Chamidah, “Peramalan Kasus Harian Monkeypox Dunia Dengan Pendekatan Support Vector Regression,” J. Apl. Stat. Komputasi Stat., vol. 15, no. 1, pp. 27–36, 2023.

Published

2025-11-20

How to Cite

[1]
Ahmad Izzuddin, F. Nikmah, and N. Hikmah, “Prediksi Jumlah Permintaan Darah Jenis Packed Red Cells Menggunakan Support Vector Regression”, jeetech, vol. 6, no. 2, pp. 177-184, Nov. 2025.