Rekonfigurasi Jaringan Menggunakan Binary Particle Swarm Optimization (BPSO) Pada Penyulang Suryagraha

Authors

  • Diana Mulya Dewi Universitas Panca Marga
  • Nuzul Hikmah Universitas Panca Marga
  • Imam Marzuki Universitas Panca Marga
  • Ahmad Izzuddin Universitas Panca Marga

DOI:

https://doi.org/10.48056/jeetech.v1i1.4

Keywords:

BPSO, Radial Distribution, artificial intelligence, PSO, Reconfiguration

Abstract

A radial distribution electrical network at a certain distance will have a large voltage loss due to conductive losses, especially at the endpoint. The tip voltage is determined by the distance of the distribution and the amount of load. The form of configuration also affects the amount of power loss and voltage loss. So that a good configuration is needed in order to obtain good efficiency. Reconfiguration of the distribution network is used to reset the network configuration form by opening and closing switches on the distribution network. Reconfiguration is expected to reduce power losses and improve distribution system reliability. Many feeders and buses on the network if calculated manually will be difficult and require a very long time. So it is necessary to solve problems using program assistance. In this case, use Particle Swarm Optimization (PSO). Particle Swarm Optimization (PSO) algorithm based on the behavior of a herd of insects, such as ants, termites, bees, or birds. BPSO is a development of the PSO algorithm designed to solve the optimization problem in a discrete combination, where the particle takes the value of binary vectors with length n and speed which is defined as the probability of bits to reach value 1. The results show a significant reduction in losses.

Author Biographies

Diana Mulya Dewi, Universitas Panca Marga

Teknik Elektro, Universitas Panca Marga, Probolinggo

Nuzul Hikmah, Universitas Panca Marga

Teknik Elektro, Universitas Panca Marga, Probolinggo

Imam Marzuki, Universitas Panca Marga

Teknik Elektro, Universitas Panca Marga, Probolinggo

Ahmad Izzuddin, Universitas Panca Marga

Teknik Elektro, Universitas Panca Marga, Probolinggo

References

M. Fayyadl, “Rekonfigurasi Jaringan Distribusi Daya Listrik dengan Metode Algoritma Genetika,” 2011.

A. Cahyono, H. K. Hidayat, S. Arfaah, and M. Ali, “Rekonfigurasi Jaringan Distribusi Radial Untuk Mengurangi Rugi Daya Pada Penyulang Jatirejo Rayon Mojoagung Menggunakan Metode Binary Particle Swarm Optimization (BPSO),” in SAINTEK II-2017, UB, Malang, 2017, pp. 103–106, [Online]. Available: http://saintek.ub.ac.id/prosiding/e20.pdf.

H. Nurohmah, A. Raikhani, and M. Ali, “Rekonfigurasi Jaringan Distribusi Radial Menggunakan Modified Firefly Algorithms (MFA) Pada Penyulang Tanjung Rayon Jombang,” JEEE-U (Journal Electr. Electron. Eng., vol. 1, no. 2, p. 13, 2017, doi: 10.21070/jeee-u.v1i2.1064.

Muhlasin and M. Ali, “Analisa Perencanaan Trafo Sisipan T. 416 Pada Trafo HL. 017 Di Jaringan Tegangan Rendah Desa Guyangan Kecamatan Bagor Kabupaten Jombang,” Intake J. Penelit. Ilmu Tek. Dan Terap., vol. 3, no. 1, pp. 48–60, 2012, [Online]. Available: http://ejournal.undar.ac.id/index.php/intake/article/view/425.

M. Ali, D. Ajiatmo, and M. Djalal, “Aplikasi Modified-Imperialist-Competitive-Algorithm (MICA) Untuk Merekonfigurasi Jaringan Radial Tenaga Listrik Pada Penyulang Mojoagung,” JEEE-U, vol. 1, no. 2, pp. 17–20, 2017, doi: 10.21070/jeee-u.v1i2.1020.

M. A. Ali, D. Ajiatmo, and H. Nurohmah, “Analisa Kontrol Daya Induction Furnace Pada Industri Peleburan Logam,” Intake J. Penelit. Ilmu Tek. Dan Terap., vol. 2, no. 1, pp. 1–14, 2011, [Online]. Available: http://ejournal.undar.ac.id/index.php/intake/article/view/408.

M. R. Djalal and M. Ali, “Particle Swarm Optimization Untuk Mengontrol Frekuensi Pada Hibrid Wind-Diesel,” Intake J. Penelit. Ilmu Tek. Dan Terap., vol. 7, no. 2, pp. 1–13, 2016, [Online]. Available: http://ejournal.undar.ac.id/index.php/intake/article/view/372.

M. Choiruddin, Choiruddin; Ridhwan, Fauzi, Ahmad; Muhlasin, Muhlasin; Nurohmah, Hidayatul; Ali, “Rekonfigurasi Jaringan Distribusi Tenaga Listrik Penyulang Benteng Berbasis MICA,” SinarFe7, vol. 1, no. 1, pp. 112–116, 2018, [Online]. Available: https://ejournal.fortei7.org/index.php/SinarFe7/article/view/120.

H. Sufitrihansyah, M. Ali Rofiq, D. Ajiatmo, and M. Ali, “Penggunaan Binary Particle Swarm Optimization untuk Rekonfigurasi Jaringan Tenaga Listrik pada Penyulang Meri,” SinarFe7, vol. 1, no. 1, pp. 134–138, 2018, [Online]. Available: https://ejournal.fortei7.org/index.php/SinarFe7/article/view/52.

M. Ali, I. Umami, and H. Sopian, “Particle Swarm Optimization (PSO) Sebagai Tuning PID Kontroler Untuk Kecepatan Motor DC,” Intake J. Penelit. Ilmu Tek. Dan Terap., vol. 7, no. 1, pp. 10–20, 2016, doi: https://doi.org/10.32492/jintake.v7i1.47.

Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez, and R. G. Harley, “Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems,” IEEE Trans. Evol. Comput., vol. 12, no. 2, pp. 171–195, 2008, doi: 10.1109/TEVC.2007.896686.

L.-Y. Chuang, J.-H. Tsai, and C.-H. Yang, “Binary particle swarm optimization for operon prediction,” Nucleic Acids Res., vol. 38, no. 12, pp. e128–e128, 2010, doi: 10.1093/nar/gkq204.

Published

2020-04-22

How to Cite

[1]
Diana Mulya Dewi, Nuzul Hikmah, Imam Marzuki, and Ahmad Izzuddin, “Rekonfigurasi Jaringan Menggunakan Binary Particle Swarm Optimization (BPSO) Pada Penyulang Suryagraha”, jeetech, vol. 1, no. 1, pp. 22-30, Apr. 2020.

Issue

Section

Articles